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SUMMARY

This report presents a viewpoint of tomography that should be well adapted to currently available

optical measurement technology as well as the needs of computational and experimental fluid dynamists.
The goals in mind are to record data with the fastest optical array sensors; process the data with the

fastest parallel processing technology available for small computers; and generate results for both experi-

mental and theoretical data. An in-depth example treats interferometric data as it might be recorded in

an aeronautics test facility, but the results are applicable whenever fluid properties are to be measured or

applied from projections of those properties. The paper discusses both computed and neural net calibra-

tion tomography. The report also contains an overview of key definitions and computational methods,

key references, computational problems such as ill-posedness, artifacts, and missing data, and some

possible and current research topics.

1. INTRODUCTION

Flow visualization often displays the integral transforms of flow properties rather than the proper-
ties themselves. Interferometry is an example. A double-exposure hologram of two index-of-refraction

fields n0(x , y, z) and n(x, y, z), recorded, for example, from light propagating parallel to the z-axis,
yields, in the refractionless limit, interference phase measurements given by

A¢(x,y) = 2___f (n(x,y,z) - no(x,y,z))dz (1)
A

One measurement of the interference phase given by (1), at one point x, y, represents one sample

point of the so-called x-ray transform of n(x, y, z) - n0(x , y, z). The calculation of n(x, y, z)- n0(x , y, z)
from such sample points is an example of computed tomography. High speed detector arrays, powerful

small computers, fast parallel processors, and a body of research conducted in the 1970's and particularly
in the 1980's make tomography a viable tool to be considered for flow diagnostics.

There are at least three integral transforms of interest to tomographers: the Radon transform, the

fan-beam or cone-beam transform, and the x-ray transform. We shall consider only the Radon and x-ray

transforms and shall note in particular how the two transforms differ.

The Radon transform, first described by Johann Radon in 1917 (ref. 1), is defined for any number

of dimensions n in Euclidean space Rn. The Radon transform R f(x) of a function f(x) where x = (xl, x2,

..., Xn) _ Rn is the set of all integrals of f(x) over all the hyperplanes of Rn.

The x-ray transform, by contrast, is always a straight-line integral. It is also defined for any num-

ber of dimensions n. Consider all planes through the origin. A plane through the origin is defined by the

coordinates 0 of its normal. Consider a particular plane through the origin and any straight line perpen-



dicular to that plane. The x-ray transform P f(x) of a function f(x) is the set of all integrals along all

straight lines perpendicular to all planes through the origin. In fact, the definition of the x-ray transform

is unaffected by the location of the plane perpendicular to @. One can imagine a plane in three dimensions

being translated along $ and perpendicular to 0 until it coincides with an interferogram of a fluid. The

assumption is that the entire fluid projects onto the interferogram in this manner. The continuum of

interference phase measurements (except a possible reference offset and normalization) is the x-ray trans-
form at 0 of the index of refraction of the fluid. Defining the complete x-ray transform requires recording

and measuring interferograms for the continuum of directions on the unit hemisphere.

The x-ray and Radon transforms are the same in two dimensions. Medical tomography using x-rays

is done typically by stacking two-dimensional slices recorded through a patient. It's common and correct
to refer to the linear projections recorded for a slice as samples of the Radon transform. The terminology

• may mislead flow diagnostics professionals who may need to use three-dimensional tomography at times.

Figure 1 summarizes the difference between the Radon and x-ray transforms in R3. An integral of a func-

tion over the plane shown in the figure is a sample point of the Radon transform, and an integral along

the line perpendicular to the plane is a sample point of the x-ray transform.

Computed tomography consists of estimating a function or property from measured or theoretical

samples of the integral transforms. (Theoretical objects and their transforms are called phantoms.) Fig-
ure 2 shows a division of tomography into three major efforts: fast measurements of the transforms; reli-

able, accurate algorithms or processors for inverting the transforms; and utilization of the computations.
In medical tomography, each effort has its own dedicated experts. Tomography is a legitimate branch of

applied mathematics and has its own full-time practitioners. The methods employed depend strongly on
the measurement technology and the end uses. Tomography is underdeveloped for flow diagnostics.

Because this is only a brief overview, it's important to mention some good references.

Perhaps the best general reference is F. Natterer's The Mathematics of Computerized Tomography

(ref. 2). This book contains excellent discussions and examples of the effects of errors due to sampling, ill-
posedness, and missing data. The book also discusses the principal algorithms for inverting the trans-
forms. This reference was written by a mathematician for mathematicians, and the terminology may be

difficult for other readers.

S.R. Dean's The Radon Transform and Some of its Applications (ref. 3) discusses the principal

algorithms in notation that are probably more familiar to engineers. The book has an extensive list of
references. Unfortunately, there are no practical discussions of the effects of errors, and such discussions

are indispensable for the application of computed tomography to flow diagnostics, especially for the

incomplete data cases. Dean's and Natterer's books are excellent as a pair.

The book, Solution of m-posed Problems, by A.N. Tikhonov and V.Y. Arsenin (ref. 4) is not a

tomography book, but it does explain the origin and control of ill-posedness (the amplification of errors

depending on their spectral content).

The computational methods that accompany the algorithms of tomography are discussed prac-

tically and understandably by W.H. Press, et al. in Numerical Recipes (ref. 5).

Tomography has its own journals, although they don't normally discuss flow diagnostics. The

Journal of Computer Assisted Tomography (ref. 6) discusses medical applications; Inverse Problems

(ref. 7) contains papers by applied mathematicians and physicists.
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The remainder of this overview will discuss: measurements of the integral transforms for flow diag-

nostics; algorithms for inverting the x-ray transform; three-dimensional tomography using incomplete

data from interferograms as an example; computers and artificial neural networks for tomography; and

some on-going research.

2. SAMPLING THE INTEGRAL TRANSFORMS FOR FLOW DIAGNOSTICS

Useful tomography requires the parallel, or at least fast, measurement of thousands of channels of

data. Some optical technologies such as phase shifting interferometry with CCD cameras meet this

requirement. The next section discusses sampling the Radon transformation in three dimensions.

2.1 Sampling the Radon Transformation in Three Dimensions

It is mathematically expedient to assume that the fluid property is non-zero only within a sphere.

The theorems of tomography assume that a function has this so-called compact support. It's convenient
to normalize coordinates so that the fluid is confined to within a spherical region of unit radius called the

unit ball f_3, and the property itself is often normalized. These stipulations are kept in mind, if not stated

explicitly, in the following discussions.

Hanson, et al. (ref. 8) have discussed at least the concept of measuring various fluid properties
from laser-induced fluorescence produced by sheet or planar illumination. Consider the case where effects

other than density can be ignored. Imagine firing a pulsed laser sheet. The total light emitted in fluoresc-

ence is proportional to the number of fluorescing molecules N(0, r) in a thin sheet located about the plane

defined by radial coordinate r and orientation 0. We could imagine surrounding the region with a spheri-

cal calorimeter with a thin slice through which the laser sheet passes unincumbered. The total energy

measured is essentially one sample of the three-dimensional Radon transform of the density p(x). In a

sense, the number of fluorescing molecules is a sample of the Radon transform of the density in the limit
where the sheet has zero thickness. In mathematical terms the energy measured is given by

f p(x)dxE(0,r) = rN(0, r)= rt x-# r (2)

where t is the thickness of the sheet and r is a proportionality factor.

This concept is extended as shown in figure 3. The laser beam is split into multiple sheets. The

sheets are separated by large enough distances that times of flight within sheets can be neglected in

comparison with the times of flight between sheets. A fast point detector then reads out the samples of
the Radon transformation as a string of pulses. Each value of 0 must be sampled in the same manner, for

example, by routing subsequent laser pulses into different paths, where each path has a point detector.

The fluorescence source function might depend on several thermodynamic variables, but the exer-

cise can be performed at several wavelengths. One might even be tempted to extend the exercise to veloc-

ity, but here the concept fails. The propagation direction of the beam and component of velocity measured

change for each sample direction. The tomography literature generally assumes a scalar field; vector-field

tomography is a topic for research.

We will say very little else about three-dimensional Radon transformations. Should you have an

appropriate application or practical measurement method, Natterer (ref. 2) provides an adequate discus-
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sion.TheRadontransform is probably mathematically simpler than the x-ray transform and exhibits a

certain locality. This locality is shown by the inverse of (2), which is given by the equation

p(x) = -- f (#,P)lp x.O -- rdO$2 --
8 _2 t ap 2

(3)

The density at x is recovered effectively from (all) planes in the neighborhood of x. The summation over

0, after the differentiation, is an example of back projection.

The Radon transform is not as robust as the x-ray transform for work in three dimensions, particu-

larly if data are limited. The Radon transform involves only three degrees of freedom (two angular and

one positional), while the x-ray transform offers four degrees of freedom (two angular and two positional).
The Radon transform is more sensitive to data errors (round-off or measurement). For relative error 6,
the Radon transform deteriorates as 61/3, and the x-ray transform deteriorates as 61/2 (ref. 9/.

2.2 Sampling the X-ray Transform in Two and Three Dimensions

Visualization data is recorded effectively as an x-ray transform. Figure 4 shows the fluid depicted

in figure 3, but with the entire volume illuminated. An afocal imaging system produces approximately a

parallel projection of the illuminated volume. An array detector samples the x-ray transform for the
direction shown. Array detectors would be required for each direction. Even velocity could be measured in

principle for this concept; since the illumination beam has a fixed direction.

Diffuse-illumination holographic interferometry is the classical method for generating the x-ray
transform in three dimensions. Phase shifting or heterodyne detection can be used for efficient interroga-

tion of the hologram. Later we discuss an example using heterodyne detection. The interference phase,

measured in interferometry of fluids in the refractionless limit, is proportional to the x-ray transform of
index of refraction as mentioned in the introduction.

Deflectometry (schlieren, moire, Hartmann screens) projects components of the gradient of the
index of refraction of a fluid. Deflectometry offers high speed electronic array detection. However, the

vector compositions of the components measured vary with direction 0, thereby preventing deflectometry

from being used with standard tomographic methods.

The x-ray transform of a fluid property f(x) is given, in general, by the equation

P#f(x)-- _ fCx + t0)dt (4)

where @is the direction in two or three (or even n) dimensions, and x here is the coordinate of a point in

the projection plane. Naive attempts to invert (4), even from good measurements, may lead to poor

results unless correct algorithms are selected and applied correctly.

3. ALGORITHMS FOR INVERTING THE X-RAY TRANSFORM

S.H. Izen has studied the x-ray transform extensively for n dimensions for both full and missing

data (refs. 10 to 13/. The work is discussed in a form suitable for applications to flow diagnostics by

A.J. Decker and S.H. Izen (ref. 14). Prior to this work, most generalizations of computed tomography to
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threeor more dimensionswere appliedto the Radon transform.The methods for invertingthe x-ray and

Radon transformsin two dimensions are,ofcourse,identical.

The two major sourcesofpoor performance are undersampling or discretizationand ill-posedness.

Systematicerrorssuch as thosecaused by misregistrationofprojectionsalsocan be serious.The conse-

quences oferrorsappear as incorrectreconstructionscalledartifacts(artefacts).Incompletedata due to

view limitationsor obstructingobjectsworsens theseeffects.(By complete data,we mean a uniform

sampling of the entirex-raytransform accordingto the Nyquist criterion.)Natterer (ref.2) shows prints

of the effectsofsampling,ill-posedness,and incomplete data.The originsoftheseeffectscan be under-

stood in terms ofthe projectionslicetheorem.

3.1ProjectionSliceTheorem

The projectionslicetheorem statesthat the n dimensionalFouriertransform (orinversetrans-

form) ofa propertyin any plane through the originof the transformspace equalsthe n - 1 dimensional

Fouriertransform (orinversetransform)ofthe x-ray transformin a parallelplane.The inverseFourier

transformoff(x)isdefinedas

Fn-lf(x) = (2_r)-r_R" exp (ix-k)f(x)dx
(s)

Inverse Fourier transforms simplify the notation for the in-depth example to be presented later.

The projection slice theorem in three dimensions is then given by the equation

(2r)F31 f(_/) = [F2-1pof](_/) (6)

where I/ represents Fourier transform coordinates on planes perpendicular to @. The left member of (6)

refers to a slice through the three-dimensional object, and the right member refers to the x-ray transform

plane.

The direct use of (6) (or its two-dlmensional version) in tomography is called a Fourier reconstruc-

tion technique. The projection slice theorem produces some immediate insights.

The first insight is that the sampling requirements for the object and the x-ray transform are the

same. If k for the property distribution is confined essentially to a sphere of radius b , then the distance h

between samples of the x-ray transform should satisfy

h < _ (7)
b

(A function with compact support is only essentially band limited.)

The second insight is that missing data impose no fundamental restrictions on the inversion of the

x-ray transform. The Fourier transform of a function with compact support is analytic. The entire trans-

form can be recovered by (error-free) analytic continuation starting from its (error-free) representation in
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any region. Restrictions are, in fact, imposed by the computational method and by ill-posedness. Analytic

continuation is ill-posed as are all procedures for inverting the x-ray transform.

3.2 nl-Posednessand Regularization

nl-posedness (refs. 4 and 14) can be thought of as the nonuniform response of a computational

procedure to the modal content (in any representation) of the errors. Errors appear in measurements,

machine precision, or round-off. Ordinary differentiation is ill-posed, for example. If the error contains

modes sin(ky) and cos(ky), then the derivative contains corresponding errors that vary as kcos(ky) and

-ksin(ky). Anyone who has attempted to differentiate noisy data has seen the effect. The second deriva-

tive in (3) for inverting the Radon transform clearly imparts larger effects to errors in the higher fre-

quency components.

The general filtering procedures used to control ill-posedness are called regularization. Regulariza-

tion is defined in terms of a regularization parameter 7(e) for error e, where _ =_ 0 as e =# 0. The regulari-

zation parameter's form and application depend on the computational procedure for inverting the x-ray

transform. Three procedures are discussed briefly: the algebraic reconstruction technique (ART), convolu-

tion back projection, and series methods (considered examples of the Fourier reconstruction technique).

3.3 Algebraic Reconstruction Technique (ART)

An algebraic reconstruction technique (ART) can be defined to be any iterative technique for

inverting the Radon or x-ray transforms (ref. 15). The usual procedure is to discretize the property distri-
bution. For the two-dimensional case, the property value can be assumed to be constant in each finite

object element. The object elements are called pixels since the results of the reconstruction are often dis-
played electronically. Each sample of the x-ray transform then involves only a few pixels (about M 1/2

where M is the number of pixels). The contribution of pixel m to the j value g. of the x-ray transform is

a'mf m where the coefficient a. m can be equated to the length of the projection line segment that intersects
t_e pixel (fig. 5). A sample pJoint of the x-ray transform is then given by

gj =

M

ajmf m (8)
m=l

where gi is measured in the manner described in section 2.2, and the a: m are calculated from geometry.
The various sample points of the x-ray transform are then used to buitd a set of linear equations. Most of

the coefficients vanish, thereby yielding a sparse matrix equation that is well suited, in principle, for solu-

tion by iterations.

One procedure (ref. 16) follows. Start with a guess F 0 of the M pixel averaged values of the prop-

erty f. Let aj be the vector of coefficients for sample point j of the x-ray transform. Execute in order the
following N computations for the N measured sample points of the x-ray transform:

_d

Fj = Fj_ 1 + t-----_ (gj - ajTFj_l)ajlaj
(9)



The parameter _ is calleda relaxationparameter and is selectedin the interval(0,2).Each pass through

the N computations iscalledone iteration.

Generally, there is an optimum number of iterations. The reconstruction appears to improve until

that number is reached, and then artifacts increase with more iterations and destroy the reconstruction.

This phenomenon is the manifestation of ill-posedness in ART. The reciprocal of the optimum number of

iterations can be thought of as the regularization parameter ('1(6) -_ 1/NoPTIMUM(e)).

Although ART does not seem to be regarded as a good technique, that judgement is often made

while comparing ART with back projection. C.M. Vest discusses the use of the above approach to ART

with holographic interferometry (ref. 17).

3.4 Convolution Backprojection

Convolution backprojection is the signature method for performing medical x-ray computed tomog-

raphy. It is very difficult to meet the requirements of the method in flow diagnostics. Backprojection, by

definition, requires projections from all viewing directions. The technique is applied to two-dimensional

slices, and the slices are stacked for complete information. Each slice may require a large number of

sample points (50,000 to 200,000). Generally, there should be more views than sample points per view.
R.M. Lewitt presents a good overview of the technique for the x-ray and fan beam transforms (ref. 18).

A regularized integral form of the algorithm is summarized by the following equations. The
coordinates within a slice are denoted by (x,y). The first equation is the backprojection operation itself.

f(x,y) : f'0 pC(x cos 0 + y sin 0,0) d0 (10)

Here, pC is the projection after convolution given by the equation

pC(._,0) = f[ p(s,0)q(_ - s)ds (11)
1

where p(s, 0) is a sample point of the x-ray transform at distance s from the origin on a line at angle 0
with respect to the x-axis. The function f(x,y) is assumed to have compact support on fl 2.

The convolving function, including a band limiting window, is given by the equation

q(s) = (2r) -2 f_r/hs ik Iw(k)exp(iks)dk
J-w/As

(12)

Equations (10) to (12) must be discretized and an appropriate window W(k) supplied for band limiting

and regularization (ref. 18).

Two-dimensional backprojection techniques are preferred, if there are no limits on views. One

application to flow diagnostics is for external rotating flows as might be associated with a rotating heli-

copter blade. Multiple holograms can be recorded, for example, at a fixed station as the flow rotates by.



3.5 Series Method

A series method is simply an application of the Fourier reconstruction technique to a series repre-

sentation of a property. Series methods have very useful properties for flow diagnostics. In effect, projec-

tion data, model data, and other measurements of a property can be combined easily with a series method.

The simplest approach is to represent the property distribution in terms of orthonormal basis func-

tions Vn(x ) as in

f(x) = Anv,,(:) (13)

where n represents the indices of the basis functions. The number of indices equals the number of

dimensions.

Equation (13) is transformed a term at a time to yield

F -1 f(t/) = _n An F-1 Vn (_/) (14)

where 7/represents the coordinates in inverse Fourier space. Each F -1 Vn(7/) can be evaluated analytical-

ly. But, by the projection slice theorem (6), each Fourier transformed x-ray sample point has its own

Fourier coordinates t/j, and can be equated, except factors of 2r to (14) at the corresponding coordinate.

The computational procedure is to terminate (14) and write an equation in the remaining coeffi-

cients A n for each transformed sample point. The orthonormal functions, in general, wilt oscillate, and the
series is terminated for functions that oscillate too rapidly for the sampling rate (speaking approximately).

There are usually many more sample points than coefficients so that a large, overdetermined set of equa-

tions is obtained. This set is expressed by the matrix equation

Qa=b (15)

where a is the vector of unknown coefficients, b is the generally much larger vector of Fourier trans-

formed sample points of the x-ray transform, and Q is a matrix computed from the transformed ortho-
normal functions.

A second regularization step (in addition to termination of the series) is required in this case. Com-

puting the generalized inverse of Q is an ill-posed problem that may be severely ill-posed for missing data.

Singular value decomposition (SVD) is used to accomplish both inversion and regularization. For SVD, Q
is written as

Q = UWV T
(16)

where U and V are column orthogonal matrices, and W is diagonal, containing the so-called singular val-

ues. In effect, computing the SVD solves the problem, since a can be estimated from V W -1 U _ b. In

fact, doing so may lead to significant errors, if the data contains measurement errors. The so-called condi-

tion of Q is measured by the ratio of the largest singular value to the smallest singular value. A large

ratio means that Q is ill-conditioned for computing a generalized inverse. Regularization consists of zero-



ing the singular valueswhich differ by a largefactorfrom the maximum singular value.The effectof

zeroinga singularvalueistoremove the correspondingcolumn vectorsin U and V from the calculation.

The penalty isthe lossofinformationassociatedwith those components. The benefitisthe removal ofan

erroramplificationfactorproportionalto the reciprocalofthe small singularvalue.The reciprocalofthe

retainedsingularvalue ratioshouldbe approximately equal to the errore.

The series method is used the same way for complete and incomplete data. Equation (13) can also

be used to incorporate presumed known values of a property. These known values are called constraints.

Constraints might be known from other measurements or they might be inserted from a model. Each

known value of f(x) produces from (13) one additional equation in the coefficients. These equations are

simply appended to the set used to form (15).

The series method does have some significant disadvantages. The orthonormal functions are non-

local, and errors in computing a coefficient appear throughout the volume. There is a so-called Gibbs

phenomenon, which makes it hard to recover edges such as those occurring at shock waves. The use of
local functions called wavelets are being investigated to alleviate these problems. A specific example of

the use of the series method is presented next.

4. THREE-DIMENSIONAL TOMOGRAPHY USING INTERFEROGRAMS

The series method was used to evaluate the efficacy of computed tomography for the limited angle

problem. The limited angle problem, as shown in figure 6, refers to a cone of viewing directions with the

cone angle less than 90 degrees. The objective of this project was to evaluate computed tomography for

very small cone angles of about 10 degrees. This angle limitation is representative of internal flow diag-

nostics (the flow diagnostics within the components of a jet engine). A single diffuse-illumination holo-
gram will record projections within a cone angle of about 10 degrees (20 degrees between extreme views).

The evolution of this project is discussed in several references (refs. 10 to 14). The detail in those

references is beyond the scope of this overview. The objective here is to outline how tomography can be

analyzed for a potential application to flow diagnostics.

One decision was to use three-dimensional computed tomography to combat the extreme ill-

posedness. Two-dimensional tomography ignores slice-to-slice projections and thereby discards data that
can be measured naturally in flow diagnostics. Nevertheless, two-dimensional tomography is computation-

ally much easier. Convolution backprojection produces the best results for full data.

Another decision was to use a standard test object or phantom. The phantom was a ball having a

constant index of refraction and unit diameter. The ball was contained in the unit-radius space. The

region outside the ball, of course, had a different index of refraction. This phantom represents a spherical

shock wave. It is important to note that there were no a priori assumptions about the symmetry of the

phantom. Convex polyhedra were also used as phantoms.

A final decision was to assume the use of infinite fringe interferograms measured to an accuracy of

1/50 fringe. This conservative choice probably means that singular values that differ from the maximum

by more than a factor of 50 should be rejected.

Interferograms were computed for the phantom to serve as inputs to the tomography routine. The

original study used 29 interferograms, where 28 interferograms were arranged in nearest neighbor fashion
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about a centralinterferogram.Each interferogramcontained32x32 samples ofthe computed interference

phase.Hence, therewere 29,696computed sample points.

The orthonormal functions Vn(X ) of (13) were products of spherical harmonics and Jacobi poly-

nomials, and the inverse Fourier transformed functions F -1 Vn(r/) of (14) were products of Bessel func-
tions of the first kind and spherical harmonics. There is a software package, created during this project,

that performs the singular value decomposition for any cone angle, calculates phantoms with and without

noise, handles data from real interferograms, and can add constraints (ref. 19).

The termination of the series in (13) depends on the overall maximum degree of the polynomials to

be retained. The polynomials are composed of Jacobi and associated Legendre contributions. The number

of coefficients is given by

N(S) = (S + 1)(S + 2)(S + 3) (17)
6

where S is the maximum degree of the polynomials retained. The referenced study (ref. 14) was performed

for S = 12 and N = 455. Here, 29,696 equations are solved for 455 coefficients. Required computer resources

will be discussed briefly in the next section.

The figures 7 to 9 show the results for a lesser calculation, which was performed for tutorial pur-

poses. The calculation was performed for 29 16x 16 samples of the x-ray transform for a total of 7424

samples. The series was terminated at degree S --- 8 for N = 165 coefficients.

Figure 7 shows the relative singular-value spectra (diagonal elements of W) for three geometries.

Remember that calculating the regularized generalized inverse of Q in (15) depends on the cone angle and

accuracy, but not on the phantom. The geometries consist of a 10-degree viewing cone, a pair of 10-degree

viewing cones at right angles, and a 90-degree viewing cone. Ill-posedness is seen to range from mild for

the 90-degree (full view) case to extreme for the 10-degree case.

Only 105 singular values are retained for the single 10-degree cone; whereas 163 singular values are

retained for the pair of 10-degree cones. The full view easily retains all 165 singular values.

Figure 8 shows the density values computed from the phantom interferograms. The density values

were computed on a 16 x 16x 16 grid from the coefficients and orthonormal functions. The single viewing

cones are defined to be along the z-axis, and only 16 values along a line parallel to that axis are plotted.

In other words, the z-axis is perpendicular to the viewing window, and figure 8 shows the performance of

tomography along this hard-to-recover direction.

We conclude that tomography with a 10-degree view limitation is not able to measure enough

singular vectors even at S -- 8 and cannot recover the edge of the sphere adequately. The 90-degree or
full-view case is able to make full use of S = 8 and would easily benefit from higher resolution interfero-

grams and higher order polynomials. The pair of cones makes full use of S = 8 and probably would bene-
fit from more resolution. A major problem with the 90-degree case is the ringing or Gibbs phenomenon at

the edges.

The original study included tomography performed on real double-exposure holograms as well

(ref. 14). A spherical flask immersed in index matching fluid was used to emulate the ball. The pressure
within the flask was changed slightly between exposures to create (with difficulty) an approximately uni-
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form change in the index-of-refraction. Heterodyne interferometry (rather than phase shifting interferom-

etry) was used to measure interference phase. In fact, 49 views were each sampled 32x32 times for a total

of 50,176 measurements. The process took about 8 hours. Only 29 views were retained. For this tutorial
demonstration, every other measurement was retained and processed by the 10-degree system. Figure 9

compares the results in the central plane for the phantom and the measured data. (The sign depends on

which state is chosen as the first exposure.)

The measured result does not have a dip in the center. Surprisingly, the dip appears for the S = 12

reconstruction, implying that poor performance of the singular value spectrum is not sufficient to reject

higher resolutions. Nevertheless_ 10-degree viewing cones are probably inadequate for pure tomographic
reconstructions.

5. COMPUTERS AND ARTIFICIAL NEURAL NETWORKS FOR TOMOGRAPHY

The availability of workstations with large memories makes tomography viable for general flow

diagnostics. The software used for the original study mentioned in the previous section was developed on

an SGI 4D/25 workstation with 16 megabytes of RAM. However, the S - 12 case, in the original study,

was performed with a supercomputer and about 200 megabytes of RAM. The tutorial demonstration at

S = 8 and with 16x16 interferograms was performed on an SGI 4D/35 with 128 megabytes of RAM. The

results of a single SVD for the tutorial demonstration occupy about 20 megabytes of RAM.

The requirements of the application will determine the computational method and the computer
resources needed. The series method probably requires the largest memory. A technique such as ART will

require less memory. However, a graphics workstation with at least 96 megabytes of RAM would be a
reasonable tool for evaluating computed tomography for an application to flow diagnostics.

Another approach to tomography is to use artificial neural networks to calibrate the procedure

(ref. 20). An artificial neural network (fig. 10) is simply a collection of interconnected nonlinear process-
ing elements or nodes. The connections for one node of a feed forward net are shown in figure 10. The

classical feed forward net is arranged in layers of nodes. Each layer receives inputs from the previous

layer only and sends outputs to the next layer only. The input connections to a node are weighted; the

weighted inputs are summed; the sum is passed through a nonlinear function; and the output of the
nonlinear function is fanned out to the next layer. A network with at least an input layer, an output

layer, and one layer in between (a hidden layer) can be calibrated or trained to perform arbitrary map-
pings between the input and output layers. The training or calibration procedure consists of using an

algorithm to adjust the weights in response to the exemplars in a training set of input-output pairs.

The training sets for the series method are created from phantoms and their calculated interfero-

grams. The phantoms consist of the orthonormal functions and linear combinations. Figure 11 compares
the performances of computed tomography and neural net calibration tomography for the 10-degree cone

and S -- 8. The neural net had one hidden layer with three nodes. Notation such as e840r is translated

from left to right as follows: _e_ stands for eigenmode; S -- 8 for overall degree of polynomial; m 0 -- 4 for

polar index; m I -- 0 for azimuthal index; and _r" for real part. The phantom ll is a linear combination of
the first ten azimuthally symmetrical orthonormal functions. The phantom %phere" is the ball of fig-

ures 7 to 9. Neural net calibration tomography and computed tomography perform similarly.

The times required for SVD and neural-net training or calibration are about the same in software.

The potential advantage of neural networks is using dedicated parallel processors that are now becoming
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commercially available. The training and recall speeds of neural net calibration tomography can be many

orders of magnitude faster when implemented with the parallel processors.

6.SOME RESEARCH

We mentioned that tomography of vector fields is not adequately developed in a mathematical

sense. There are high speed measurement methods available in deflectometry that possibly suggest per-

forming such studies.

The exterior problem is solvable with the same general approaches already discussed. Measuring a

property distribution exterior to an airfoil is an example of an exterior problem. Evidently, the exterior

problem is likely to be more ill-posed than the limited angle problem we have discussed. Some demonstra-
tions would be useful.

The series methods are convenient for combining transforms, model data, and other measurements

and for handling incomplete data problems. These methods have demonstrated several defects: they use
nonlocal orthonormal functions and require substantial computer resources. The nonlocal problem is being

addressed by investigating the use of wavelets for tomography (ref. 21). Wavelets are local functions that

can also be used to detect shockwave edges via a method called multiresolution analysis.

Clearly, demonstration applications of different methods of tomography for a variety of flow geom-

etries and properties would be useful.

7.CONCLUDING REMARKS

The necessary analytical, detector, and computer technologies are available for tomography as a

tool for flow diagnostics. These available technologies do not necessarily mean that tomography is suit-

able for all applications. It is probably desirable to perform computer experiments using phantom data

before committing resources to hardware. Fortunately, small computers are now well equipped for this

kind of analysis.
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Figure 1 .--The three-dimensional Radon and x-ray transforms.
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Figure 2.--Organization of tomography into three major
subfields.
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Rgure 3.--Measuring three-dimensional Radon transform from

sheet fluorescence data. (One direction shown.)
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Figure 4.--Measuring three-dimensional x-ray transform from fluore-
scence data. (One direction shown.)
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Figure 5.--Discretization of two-dimensional slice used in one

version of the algebraic reconstruction technique (ART). Each
pJxel (object element) is weighted by relative length of light ray
passing through it.

Figure 6.--I.imited angle problem in three-dimensional computed
tomography (a < 90 degrees). Complete data requires sampling
directions on entire unit hemlspere ( a = 90 degrees),
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Figure 7.--Relative singular values for the series method and three viewing situations: one 10-degree cone; two 10-degree
cones at fight angles; and a full view or 90-degree cone.
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Figure 8.--Relative densities determined for constant index-of-refraction ball for three viewing s'Ruations. (Solid lines
represent phantoms and dots represent their reconstructions by computed tomography. Densities are plotted
parallel to viewing cone axis.) (a) One 10-degree viewing cone (b) TwO 10-degree viewing cones at right angles.
(c) Full or 90-degree viewing cone.
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Figure g.--Compadson of tomography from measured and calculated data for constant Index-of-refraction ball for a

limited cone angle of 10 degrees; for 29 16x16 interference phase measurements or phantoms; and for a polynomial

degree of 8. (Density is shown near central plane of ball.)
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Figure 10.---Sketch of artificial neural network. (Only connections to and
from one hidden-layer node are shown.)
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Figure 11 .--Comparison of performances of computed and neural-net calibration tomography. (Solid lines represent phantoms and dots

represent their reconstructions.)
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